4-Point Block Method for Direct Integration of First-Order Ordinary Differential Equations
نویسندگان
چکیده
This research paper examines the derivation and implementation of a new 4-point block method for direct integration of first-order ordinary differential equations using interpolation and collocation techniques. The approximate solution is a combination of power series and exponential function. The paper further investigates the properties of the new integrator and found it to be zero-stable, consistent and convergent. The new integrator was tested on some numerical examples and found to perform better than some existing ones.
منابع مشابه
Two Point Fully Implicit Block Direct Integration Variable Step Method for Solving Higher Order System of Ordinary Differential Equations
Two point fully implicit block method of variable step size is developed for solving directly the second order system of Ordinary Differential Equations (ODEs). This method will estimate the solutions of Initial Value Problems (IVPs) at two points simultaneously. The method developed is suitable for the numerical integration of non stiff and mildly stiff differential systems. Numerical results ...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملImplementation of four-point fully implicit block method for solving ordinary differential equations
This paper describes the development of a four-point fully implicit block method for solving first order ordinary differential equations (ODEs) using variable step size. This method will estimate the solutions of initial value problems (IVPs) at four points simultaneously. The method developed is suitable for the numerical integration of non-stiff and mildly stiff differential systems. The perf...
متن کاملDirect method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions
In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...
متن کاملDhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations
In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...
متن کامل